پروژه 24

پروژه 24

دانلود پروژه و حل تمرین و گزارش کارآموزی و تحقیق و مقاله و جزوه و کتاب

نظرسنجی سایت

رشته تحصیلی شما؟

اشتراک در خبرنامه

جهت عضویت در خبرنامه لطفا ایمیل خود را ثبت نمائید

Captcha

آمار بازدید

  • بازدید امروز : 801
  • بازدید دیروز : 836
  • بازدید کل : 2569838

مقاله شناخت عمل و رویداد در ویدیوها با یادگیری از منابع وب ناهمگن


مقاله شناخت عمل و رویداد در ویدیوها با یادگیری از منابع وب ناهمگن

عنوان مقاله فارسی: شناخت عمل و رویداد در ویدیوها با یادگیری از منابع وب ناهمگن

عنوان مقاله لاتین: Action and Event Recognition in Videos by Learning From Heterogeneous Web Sources

نویسندگان: Li Niu; Xinxing Xu; Lin Chen; Lixin Duan; Dong Xu

تعداد صفحات: 14

سال انتشار: 2017

زبان: لاتین

 


Abstract:

In this paper, we propose new approaches for action and event recognition by leveraging a large number of freely available Web videos (e.g., from Flickr video search engine) and Web images (e.g., from Bing and Google image search engines). We address this problem by formulating it as a new multi-domain adaptation problem, in which heterogeneous Web sources are provided. Specifically, we are given different types of visual features (e.g., the DeCAF features from Bing/Google images and the trajectory-based features from Flickr videos) from heterogeneous source domains and all types of visual features from the target domain. Considering the target domain is more relevant to some source domains, we propose a new approach named multi-domain adaptation with heterogeneous sources (MDA-HS) to effectively make use of the heterogeneous sources. In MDA-HS, we simultaneously seek for the optimal weights of multiple source domains, infer the labels of target domain samples, and learn an optimal target classifier. Moreover, as textual descriptions are often available for both Web videos and images, we propose a novel approach called MDA-HS using privileged information (MDA-HS+) to effectively incorporate the valuable textual information into our MDA-HS method, based on the recent learning using privileged information paradigm. MDA-HS+ can be further extended by using a new elastic-net-like regularization. We solve our MDA-HS and MDA-HS+ methods by using the cutting-plane algorithm, in which a multiple kernel learning problem is derived and solved. Extensive experiments on three benchmark data sets demonstrate that our proposed approaches are effective for action and event recognition without requiring any labeled samples from the target domain.


مبلغ قابل پرداخت 15,000 تومان

توجه: پس از خرید فایل، لینک دانلود بصورت خودکار در اختیار شما قرار می گیرد و همچنین لینک دانلود به ایمیل شما ارسال می شود. درصورت وجود مشکل می توانید از بخش تماس با ما ی همین فروشگاه اطلاع رسانی نمایید.

Captcha
پشتیبانی خرید

برای مشاهده ضمانت خرید روی آن کلیک نمایید

  انتشار : ۱۶ خرداد ۱۴۰۰               تعداد بازدید : 339

برچسب های مهم

در صورت هرگونه مشکل و مغایرت در دانلود فایل ها به پشتیبانی سایت مراجعه کنید

فید خبر خوان    نقشه سایت    تماس با ما