پروژه 24

پروژه 24

دانلود پروژه و حل تمرین و گزارش کارآموزی و تحقیق و مقاله و جزوه و کتاب

نظرسنجی سایت

رشته تحصیلی شما؟

اشتراک در خبرنامه

جهت عضویت در خبرنامه لطفا ایمیل خود را ثبت نمائید

Captcha

آمار بازدید

  • بازدید امروز : 689
  • بازدید دیروز : 836
  • بازدید کل : 2569726

مقاله حذف انسان با شبکه عصبی کانولوشن متنی


مقاله حذف انسان با شبکه عصبی کانولوشن متنی

عنوان مقاله فارسی: حذف انسان با شبکه عصبی کانولوشن متنی

عنوان مقاله لاتین: Human Parsing with Contextualized Convolutional Neural Network

نویسندگان: Xiaodan Liang; Chunyan Xu; Xiaohui Shen; Jianchao Yang; Jinhui Tang; Liang Lin; Shuicheng Yan

تعداد صفحات: 12

سال انتشار: 2017

زبان: لاتین


Abstract:

In this work, we address the human parsing task with a novel Contextualized Convolutional Neural Network (Co-CNN) architecture, which well integrates the cross-layer context, global image-level context, semantic edge context, within-super-pixel context and cross-super-pixel neighborhood context into a unified network. Given an input human image, Co-CNN produces the pixelwise categorization in an end-to-end way. First, the cross-layer context is captured by our basic local-to-global-to-local structure, which hierarchically combines the global semantic information and the local fine details across different convolutional layers. Second, the global image-level label prediction is used as an auxiliary objective in the intermediate layer of the Co-CNN, and its outputs are further used for guiding the feature learning in subsequent convolutional layers to leverage the global image-level context. Third, semantic edge context is further incorporated into Co-CNN, where the high-level semantic boundaries are leveraged to guide pixel-wise labeling. Finally, to further utilize the local super-pixel contexts, the within-super-pixel smoothing and cross-super-pixel neighbourhood voting are formulated as natural sub-components of the Co-CNN to achieve the local label consistency in both training and testing process. Comprehensive evaluations on two public datasets well demonstrate the significant superiority of our Co-CNN over other state-of-the-arts for human parsing. In particular, the F-1 score on the large dataset [1] reaches 81.72 percent by Co-CNN, significantly higher than 62.81 percent and 64.38 percent by the state-of-the-art algorithms, M-CNN [2] and ATR [1], respectively. By utilizing our newly collected large dataset for training, our Co-CNN can achieve 85.36 percent in F-1 score.


مبلغ قابل پرداخت 15,000 تومان

توجه: پس از خرید فایل، لینک دانلود بصورت خودکار در اختیار شما قرار می گیرد و همچنین لینک دانلود به ایمیل شما ارسال می شود. درصورت وجود مشکل می توانید از بخش تماس با ما ی همین فروشگاه اطلاع رسانی نمایید.

Captcha
پشتیبانی خرید

برای مشاهده ضمانت خرید روی آن کلیک نمایید

  انتشار : ۱۲ خرداد ۱۴۰۰               تعداد بازدید : 243

برچسب های مهم

در صورت هرگونه مشکل و مغایرت در دانلود فایل ها به پشتیبانی سایت مراجعه کنید

فید خبر خوان    نقشه سایت    تماس با ما