پروژه 24

پروژه 24

دانلود پروژه و حل تمرین و گزارش کارآموزی و تحقیق و مقاله و جزوه و کتاب

نظرسنجی سایت

رشته تحصیلی شما؟

اشتراک در خبرنامه

جهت عضویت در خبرنامه لطفا ایمیل خود را ثبت نمائید

Captcha

آمار بازدید

  • بازدید امروز : 140
  • بازدید دیروز : 794
  • بازدید کل : 2693587

مقاله اجزای آنتروپی هسته بهینه شده


مقاله اجزای آنتروپی هسته بهینه شده

عنوان مقاله فارسی: اجزای آنتروپی هسته بهینه شده

عنوان مقاله لاتین:
Optimized Kernel Entropy Components

نویسندگان: Emma Izquierdo-Verdiguier; Valero Laparra; Robert Jenssen; Luis Gómez-Chova; Gustau Camps-Valls

تعداد صفحات: 14

سال انتشار: 2017

زبان: لاتین


Abstract:

This brief addresses two main issues of the standard kernel entropy component analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of variance, as in the kernel principal components analysis. In this brief, we propose an extension of the KECA method, named optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular, it is based on the independent component analysis framework, and introduces an extra rotation to the eigen decomposition, which is optimized via gradient-ascent search. This maximum entropy preservation suggests that OKECA features are more efficient than KECA features for density estimation. In addition, a critical issue in both the methods is the selection of the kernel parameter, since it critically affects the resulting performance. Here, we analyze the most common kernel length-scale selection criteria. The results of both the methods are illustrated in different synthetic and real problems. Results show that OKECA returns projections with more expressive power than KECA, the most successful rule for estimating the kernel parameter is based on maximum likelihood, and OKECA is more robust to the selection of the length-scale parameter in kernel density estimation.


مبلغ قابل پرداخت 15,000 تومان

توجه: پس از خرید فایل، لینک دانلود بصورت خودکار در اختیار شما قرار می گیرد و همچنین لینک دانلود به ایمیل شما ارسال می شود. درصورت وجود مشکل می توانید از بخش تماس با ما ی همین فروشگاه اطلاع رسانی نمایید.

Captcha
پشتیبانی خرید

برای مشاهده ضمانت خرید روی آن کلیک نمایید

  انتشار : ۱۲ خرداد ۱۴۰۰               تعداد بازدید : 232

برچسب های مهم

در صورت هرگونه مشکل و مغایرت در دانلود فایل ها به پشتیبانی سایت مراجعه کنید

فید خبر خوان    نقشه سایت    تماس با ما